【題目】如圖,AB是⊙O的直徑,弦CDABH,G為⊙O上一點,連接AGCDK,在CD的延長線上取一點E,使EG=EK,EG的延長線交AB的延長線于F

1)求證:EF是⊙O的切線;

2)連接DG,若ACEF時.

①求證:KGD∽△KEG;

②若cosC=,AK=,求BF的長.

【答案】(1)詳見解析;(2)詳見解析;.

【解析】

1)連接OG,由EG=EK知∠KGE=GKE=AKH,結合OA=OG知∠OGA=OAG,根據(jù)CDAB得∠AKH+OAG=90°,從而得出∠KGE+OGA=90°,據(jù)此即可得證;

2)①由ACEF知∠E=C=AGD,結合∠DKG=GKE即可證得KGD∽△KEG

②連接OG,由 CH=4k,AC=5k,可得AH=3kCK=AC=5k,HK=CK-CH=k.利用AH2+HK2=AK2k=1,即可知CH=4,AC=5,AH=3,再設⊙O半徑為R,由OH2+CH2=OC2可求得 ,根據(jù) ,從而得出答案.

解:(1)如圖,連接OG

EG=EK,

∴∠KGE=GKE=AKH

OA=OG,

∴∠OGA=OAG

CDAB

∴∠AKH+OAG=90°,

∴∠KGE+OGA=90°,

EF是⊙O的切線.

2)①∵ACEF

∴∠E=C,

又∠C=AGD,

∴∠E=AGD,

又∠DKG=GKE,

∴△KGD∽△KEG;

②連接OG

,AK=,

∴設CH=4k,AC=5k,則AH=3k

KE=GEACEF,

CK=AC=5k

HK=CK-CH=k

RtAHK中,根據(jù)勾股定理得AH2+HK2=AK2,即,

解得k=1

CH=4,AC=5,則AH=3,

設⊙O半徑為R,在RtOCH中,OC=R,OH=R-3,CH=4 ,

由勾股定理得:OH2+CH2=OC2,即(R-32+42=R2,

RtOGF中,,

故答案為:(1)詳見解析;(2)①詳見解析;②

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時間是( 。

A. 1小時 B. 2小時 C. 3小時 D. 4小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9mB處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A是雙曲線k10)上一點,點A的橫坐標為1,過點A作平行于y軸的直線,與x軸交于點B,與雙曲線k20)交于點C.點Dm,0)是x軸上一點,且位于直線AC右側,EAD的中點.

1)當m4時,求△ACD的面積(用含k1k2的代數(shù)式表示);

2)若點E恰好在雙曲線k10)上,求m的值;

3)設線段EB的延長線與y軸的負半軸交于點F,當點D的坐標為D2,0)時,若BDF的面積為1,且CFAD,求k1的值,并直接寫出線段CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】n是一個兩位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,則稱n兩位遞增數(shù)(如13,35,56等).在某次數(shù)學趣味活動中,每位參加者需從由數(shù)字1,23,4,5,6構成的所有的兩位遞增數(shù)中隨機抽取1個數(shù),且只能抽取一次.

1)請用列表法或樹狀圖寫出所有的等可能性結果,寫出所有個位數(shù)字是6兩位遞增數(shù);

2)求抽取的兩位遞增數(shù)的個位數(shù)字與十位數(shù)字之積能被5整除的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線過點,這條拋物線的對稱軸與x軸交于點C,點P為射線CB上一個動點(不與點C重合),點D為此拋物線對稱軸上一點,且CPD=

1)求拋物線的函數(shù)表達式;

2)若點P的橫坐標為m,△PCD的面積為S,求Sm之間的函數(shù)關系式;

3)過點PPEDP,連接DE,FDE的中點,試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P為等邊ABC形內(nèi)一點,且PA3cm,PB4 cmPC5 cm,則圖中PBC的面積為________cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,,在邊上,以為圓心,為半徑的弧經(jīng)過點是弧上一個動點.

求半徑的長;

如果點是弧的中點,聯(lián)結,求的正切值;

如果平分,延長交于點,求線段的長.

查看答案和解析>>

同步練習冊答案