【題目】如圖,是兩條筆直的公路,點(diǎn)是上的一個(gè)超市,現(xiàn)在想建一個(gè)服務(wù)區(qū),要求到兩條公路的距離相等,且服務(wù)區(qū)到超市的距離最近,求作這個(gè)服務(wù)區(qū).
【答案】圖見解析
【解析】
根據(jù)角平分線的判定,可知該服務(wù)區(qū)在∠O的平分線上,再根據(jù)垂線段最短,可知點(diǎn)P和服務(wù)區(qū)的連線垂直于∠O的平分線,故作出∠O的平分線,然后過(guò)點(diǎn)P作∠O的平分線的垂線,垂足即為所求.
解:以O為圓心,任意長(zhǎng)度為半徑作弧,分別交OA、OB于點(diǎn)D、E,分別以D、E為圓心,大于DE的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)F,連接OF并延長(zhǎng),射線OF即為∠AOB的角平分線;
以P為圓心,大于P到OF的距離為半徑作弧,交射線OF于G、H,分別以G、H為圓心,大于GH的長(zhǎng)為半徑作弧,兩弧在射線OF上方交于點(diǎn)M,連接PM,與射線OF的交點(diǎn)即為服務(wù)區(qū),此時(shí)PM⊥OF.
根據(jù)角平分線的判定和垂線段最短,這個(gè)服務(wù)區(qū)即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,把的各邊進(jìn)行下列變換:①各邊的長(zhǎng)度分別擴(kuò)大為原來(lái)的3倍;②各邊的長(zhǎng)度分別縮小為原來(lái)的;③各邊的長(zhǎng)度分別增加2;④各邊的長(zhǎng)度分別平方.其中得到的三角形與相似的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線x=1的拋物線與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,3),且OA=OC.
(1)求拋物線的解析式;
(2)點(diǎn)P是直線AC上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D.若△PDC與△AOB相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超速行駛被稱為“馬路第一殺手”為了讓駕駛員自覺(jué)遵守交通規(guī)則,湖潯大道公路檢測(cè)中心在一事故多發(fā)地段安裝了一個(gè)測(cè)速儀器,如圖所示,已知檢測(cè)點(diǎn)設(shè)在距離公路10米的A處,測(cè)得一輛汽車從B處行駛到C處所用時(shí)間為1.35秒.已知∠B=45°,∠C=30°.
(1)求B,C之間的距離(結(jié)果保留根號(hào));
(2)如果此地限速為70km/h,那么這輛汽車是否超速?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù);≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)和直線,則點(diǎn)到直線的距離可用公式計(jì)算.
例如:求點(diǎn) 到直線的距離.
解:因?yàn)橹本,其中.
所以點(diǎn)到直線的距離為.
根據(jù)以上材料,解答下列問(wèn)題:
(1)點(diǎn)到直線的距離;
(2)已知的圓心的坐標(biāo)為 ,半徑為2,判斷與直線的位置關(guān)系并說(shuō)明理由;
(3)已知直線與平行,、是直線上的兩點(diǎn)且,是直線上任意一點(diǎn),求的面積.
(4)如圖,直線與軸、軸分別交于、兩點(diǎn),把沿直線翻折后得到,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=﹣ax2+c(a≠c)的圖象大致為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B 的坐標(biāo)為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點(diǎn)D、E,連結(jié)DE,△DEF與△DEB關(guān)于直線DE對(duì)稱,當(dāng)點(diǎn)F恰好落在線段OA上時(shí),則k的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①是長(zhǎng)春新地標(biāo)一一摩天活力城樓頂上的摩天輪,被譽(yù)為“長(zhǎng)春眼”,如圖②是其正面的平面圖.已知摩天活力城樓頂AD距地面BC為34米,摩天輪⊙O與樓頂AD近似相切,切點(diǎn)為G.測(cè)得∠OEF=∠OFE=67°,EF=27.54米,求摩天輪的最高點(diǎn)到地面BC的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin67°=0.92,cos67°0.39,tan67°=2.36)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com