【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45°.
(1)試判斷CD與⊙O的位置關系,并證明你的結(jié)論;
(2)若⊙O的半徑為3,sin∠ADE= ,求AE的值.

【答案】
(1)解:CD與圓O相切.

證明:連接OD,則∠AOD=2∠AED=2×45°=90°.

∵四邊形ABCD是平行四邊形,

∴AB∥DC.

∴∠CDO=∠AOD=90°.

∴OD⊥CD.

∴CD與圓O相切


(2)解:連接BE,則∠ADE=∠ABE.

∴sin∠ADE=sin∠ABE=

∵AB是圓O的直徑,

∴∠AEB=90°,AB=2×3=6.

在Rt△ABE中,sin∠ABE= =

∴AE=5.


【解析】(1)連接OD,則∠AOD=為直角,由四邊形ABCD是平行四邊形,則AB∥DC.從而得出∠CDO=90°,即可證出答案.(2)連接BE,則∠ADE=∠ABE根據(jù)題意得sin∠ABE= .由AB是圓O的直徑求出AB的長.再在Rt△ABE中,求得AE即可.
【考點精析】解答此題的關鍵在于理解平行四邊形的性質(zhì)的相關知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分,以及對圓周角定理的理解,了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校需要招聘一名教師,對三名應聘者進行了三項素質(zhì)測試下面是三名應聘者的綜合測試成績:

應聘者

成績

項目

A

B

C

基本素質(zhì)

70

65

75

專業(yè)知識

65

55

50

教學能力

80

85

85

(1)如果根據(jù)三項測試的平均成績確定錄用教師,那么誰將被錄用?

(2)學校根據(jù)需要,對基本素質(zhì)、專業(yè)知識、教學能力的要求不同,決定按2:1:3的比例確定其重要性,那么哪一位會被錄用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(﹣2,﹣4),直線x=﹣2與x軸相交于點B,連接OA,拋物線y=﹣x2從點O沿OA方向平移,與直線x=﹣2交于點P,頂點M到點A時停止移動.

(1)線段OA所在直線的函數(shù)解析式是;
(2)設平移后拋物線的頂點M的橫坐標為m,問:當m為何值時,線段PA最長?并求出此時PA的長.
(3)若平移后拋物線交y軸于點Q,是否存在點Q使得△OMQ為等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1和∠2互為補角,∠A=D.求證:ABCD.

證明:∵∠1與∠CGD是對頂角,

∴∠1=CGD______.

又∠1和∠2互為補角(已知),

∴∠CGD和∠2互為補角,

AEFD_________

∴∠A=BFD_______.

∵∠A=D(已知),

∴∠BFD=D_______,

ABCD______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點Ax1,y1、Bx2,y2,當y1y2時,試比較x1x2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點C′處;作∠BPC′的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一根起點為1的數(shù)軸,現(xiàn)有同學將它彎折,彎折后虛線上第一行的數(shù)是1,第二行的數(shù)是13,第三行的數(shù)是43,…,依此規(guī)律,第五行的數(shù)是( )

A. 183 B. 157 C. 133 D. 91

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______;

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____

(4)若∠2=∠____,則DA∥EB,理由是____

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200元/時。其它主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度(千米/時)

運費(元/千米)

裝卸費用(元)

火車

100

15

2000

汽車

80

20

900

(1)如果汽車的總支出費用比火車費用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答

(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運往本市銷售。你將選擇哪種運輸方式比較合算呢?

查看答案和解析>>

同步練習冊答案