【題目】如圖,的直角邊x軸上,y軸的正半軸上,且,,按以下步驟作圖:①以點(diǎn)A為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交,于點(diǎn)C,D;②分別以C,D為圓心,大于的長(zhǎng)為半徑作弧,兩弧在內(nèi)交于點(diǎn)M;③作射線,交y軸于點(diǎn)E,則點(diǎn)E的坐標(biāo)為(

A.B.C.D.

【答案】B

【解析】

如圖,過(guò)點(diǎn)EEF垂直AB于點(diǎn)F,垂足為點(diǎn)F.,可求得OB的長(zhǎng)度,根據(jù)基本作圖可知AM為∠OAB的平分線,易得OE=EF,利用面積相等法可得SOAB=SOAE+ SBAE,即可求得點(diǎn)E的坐標(biāo).

解:如圖,過(guò)點(diǎn)EEF垂直AB于點(diǎn)F,垂足為點(diǎn)F.

,,

根據(jù)勾股定理可得:OB=4,AB=5

∵點(diǎn)EEF垂直AB于點(diǎn)F,

∴∠EFA=90°,

∴∠OEA=EFA,

根據(jù)基本作圖可知AM為∠OAB的平分線,

OE=EF

SOAB=SOAE+ SBAE,

,

解得:,

∴點(diǎn)E的坐標(biāo)為,

故答案選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)y1ax2+bx+a5a,b為常數(shù),a0),且2a+b3

1)若該二次函數(shù)的圖象過(guò)點(diǎn)(﹣1,4),求該二次函數(shù)的表達(dá)式;

2y1的圖象始終經(jīng)過(guò)一個(gè)定點(diǎn),若一次函數(shù)y2kx+bk為常數(shù),k0)的圖象也經(jīng)過(guò)這個(gè)定點(diǎn),探究實(shí)數(shù)k,a滿足的關(guān)系式;

3)已知點(diǎn)Px0,m)和Q1,n)都在函數(shù)y1的圖象上,若x01,且mn,求x0的取值范圍(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+2與反比例函數(shù)y=的圖象相交于點(diǎn)A(a,3),且與x軸相交于點(diǎn)B

1)求該反比例函數(shù)的表達(dá)式;

2)寫出直線y=x+2向下平移2個(gè)單位的直線解析式,并求出這條直線與雙曲線的交點(diǎn)坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A4,4),By軸正半軸上一點(diǎn),連接AB,在第一象限作ACAB,∠BAC90°,過(guò)點(diǎn)C作直線CDx軸于D,直線CD與直線yx交于點(diǎn)E,且ED5EC,則直線BC解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初級(jí)中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生年齡情況,隨機(jī)調(diào)查了本校部分學(xué)生的年齡,根據(jù)所調(diào)查的學(xué)生的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖和圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)本次接受調(diào)查的學(xué)生人數(shù)為_______,圖 的值為

2)求統(tǒng)計(jì)的這組學(xué)生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)活動(dòng)小組實(shí)地測(cè)量某條河流兩岸互相平行的一段東西走向的河的寬度.在河的北岸邊點(diǎn)A處,測(cè)得河的南岸邊點(diǎn)B處在其南偏東45°方向,然后向北走40米到達(dá)點(diǎn)C處,測(cè)得點(diǎn)B在點(diǎn)C的南偏東27°方向,求這段河的寬度.(結(jié)果精確到1米.參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,河的兩岸l1l2互相平行,A、Bl1上的兩點(diǎn),C、Dl2上的兩點(diǎn),某同學(xué)在A處測(cè)得∠CAB90°,∠DAB30°,再沿AB方向走20米到達(dá)點(diǎn)E(即AE20),測(cè)得∠DEB60°.求:CD兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=10,BC=15,tanA=點(diǎn)PAD邊上任意一點(diǎn),連結(jié)PB,將PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PQ.若點(diǎn)Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉(zhuǎn)到PQ所掃過(guò)的面積____(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蘇州市某初中學(xué)校對(duì)本校初中學(xué)生完成家庭作業(yè)的時(shí)間做了總量控制,規(guī)定每天完成家庭作業(yè)時(shí)間不超過(guò)1.5小時(shí).該校數(shù)學(xué)課外興趣小組對(duì)本校初中學(xué)生回家完成作業(yè)的時(shí)間做了一次隨機(jī)抽樣調(diào)查,并繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

0≤t0.5

4

0.1

0.5≤t1

a

0.3

1≤t1.5

10

0.25

1.5≤t2

8

b

2≤t2.5

6

0.15

合計(jì)

1

(1)a ,b

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)請(qǐng)估計(jì)該校1 500名初中學(xué)生中,約有多少學(xué)生在1.5小時(shí)以內(nèi)完成家庭作業(yè).

查看答案和解析>>

同步練習(xí)冊(cè)答案