相關習題
 0  365235  365243  365249  365253  365259  365261  365265  365271  365273  365279  365285  365289  365291  365295  365301  365303  365309  365313  365315  365319  365321  365325  365327  365329  365330  365331  365333  365334  365335  365337  365339  365343  365345  365349  365351  365355  365361  365363  365369  365373  365375  365379  365385  365391  365393  365399  365403  365405  365411  365415  365421  365429  366461 

科目: 來源: 題型:

【題目】已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙OAB于點D,E的中點.

1)求證:∠ACD=∠DEC;(2)延長DECB交于點P,若PB=BO,DE=2,求PE的長

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,∠A=90°,BD=BCCEBDE

1)求證:BE=AD;(2)若∠DCE=15°,AB=2,求在四邊形ABCD的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本題8分)已知關于的方程

1求證:方程總有兩個實數(shù)根;

2如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】下面是小明設計的“作三角形的高線”的尺規(guī)作圖過程.

已知:△ABC

求作:BC邊上的高線.

作法:如圖,

①分別以A,B為圓心,大于長為半徑畫弧,兩弧交于點D,E;

②作直線DE,與AB交于點F,以點F為圓心,FA長為半徑畫圓,交CB的延長線于點G

③連接AG

所以線段AG就是所求作的BC邊上的高線.

根據(jù)小明設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面證明.

證明:連接DADBEAEB

DA=DB,

∴點D在線段AB的垂直平分線上( )(填推理的依據(jù)).

=

∴點E在線段AB的垂直平分線上.

DE是線段AB的垂直平分線.

FA=FB

AB是⊙F的直徑.

∴∠AGB=90°( )(填推理的依據(jù)).

AGBC

AG就是BC邊上的高線.

查看答案和解析>>

科目: 來源: 題型:

【題目】改革開放以來,由于各階段發(fā)展重心不同,某市的需求結(jié)構(gòu)經(jīng)歷了消費投資交替主導、投資消費雙輪驅(qū)動到消費主導的變化.到2007年,某市消費率超過投資率,標志著某市經(jīng)濟增長由投資消費雙輪驅(qū)動向消費趨于主導過渡.下圖是某市19782017年投資率與消費率統(tǒng)計圖.根據(jù)統(tǒng)計圖回答:________年,某市消費率與投資率相同;從2000年以后,某市消費率逐年上升的時間段是________

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)學課上,王老師讓同學們對給定的正方形ABCD,如圖.建立合適的平面直角坐標系,并表示出各頂點的坐標.下面是4名同學表示各頂點坐標的結(jié)果:

甲同學:A01),B0,0),C10),D1,1);

乙同學:A0,0),B0,-1),C1,-1),D1,0);

丙同學:A1,0),B1,-2),C3,-2),D3,0);

丁同學:A(-1,2),B(-1,0),C0,0),D0,2);

上述四名同學表示的結(jié)果中,四個點的坐標都表示正確的同學是( )

A. 甲、乙、丙B. 乙、丙、丁C. 甲、丙D. 甲、乙、丙、丁

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線軸于點,交軸于點,拋物線經(jīng)過點,交軸于點,點為拋物線上一動點,過點軸的垂線,交直線于點,設點的橫坐標為.

1)求拋物線的解析式.

2)當點在直線下方的拋物線上運動時,求出長度的最大值.

3)當以,,為頂點的三角形是等腰三角形時,求此時的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在學習了矩形后,數(shù)學活動小組開展了探究活動.如圖1,在矩形中,,點上,先以為折痕將點往右折,如圖2所示,再過點,垂足為,如圖3所示.

1)在圖3中,若,則的度數(shù)為______,的長度為______.

2)在(1)的條件下,求的長.

3)在圖3中,若,則______.

查看答案和解析>>

科目: 來源: 題型:

【題目】教育部基礎教育司負責人解讀“2020新中考時強調(diào)要注重學生分析與解決問題的能力,要增強學生的創(chuàng)新精神和綜合素質(zhì).王老師想嘗試改變教學方法,將以往教會學生做題改為引導學生會學習.于是她在菱形的學習中,引導同學們解決菱形中的一個問題時,采用了以下過程(請解決王老師提出的問題):

先出示問題(1:如圖1,在等邊三角形中,上一點,上一點,如果,連接、、相交于點,求的度數(shù).

通過學習,王老師請同學們說說自己的收獲.小明說發(fā)現(xiàn)一個結(jié)論:在這個等邊三角形中,只要滿足,則的度數(shù)就是一個定值,不會發(fā)生改變.緊接著王老師出示了問題(2:如圖2,在菱形中,,上一點,上一點,,連接、,、相交于點,如果,,求出菱形的邊長.

問題(3):通過以上的學習請寫出你得到的啟示(一條即可).

查看答案和解析>>

科目: 來源: 題型:

【題目】某游樂場試營業(yè)期間,每天運營成本為1000.經(jīng)統(tǒng)計發(fā)現(xiàn),每天售出的門票張數(shù)(張)與門票售價(元/張)之間滿足一次函數(shù),設游樂場每天的利潤為(元).(利潤=票房收入-運營成本)

1)試求之間的函數(shù)表達式.

2)游樂場將門票售價定為多少元/張時,每天獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案