【題目】已知函數(shù),若函數(shù)的圖象與軸的交點個數(shù)不少于2個,則實數(shù)的取值范圍為( )
A. B.
C. D.
【答案】A
【解析】由題可知函數(shù)的圖象與軸的交點個數(shù)不少于2個,即為函數(shù)y=f(x)的圖像與函數(shù)y=mx+m的圖像的交點個數(shù)不少于2個,由于函數(shù)y=mx+m的圖像過定點P(-1,0),且斜率為m,作出函數(shù)y=f(x)的圖像如圖所示,
數(shù)形結(jié)合可知,當(dāng)動直線過點A時有2個交點,當(dāng)動直線為的切線時,即過點B時有兩個交點,在這兩種極限位置之間有3個交點,易知設(shè)直線y=mx+m與函數(shù)的圖像相切,聯(lián)立方程組由題可知又x>1.所以
過點(-1,0)作的切線,設(shè)切點坐標(biāo)為,則此時,切線的斜率為
故實數(shù)m的取值范圍為.綜上實數(shù)m的取值范圍為.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù), 為直線的傾斜角,且),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)若直線經(jīng)過圓的圓心,求直線的傾斜角;
(2)若直線與圓交于, 兩點,且,點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題甲成立,可推出命題乙不成立,則下列說法中,一定正確的是( )
A.命題甲不成立,可推出命題乙成立B.命題甲不成立,可推出命題乙不成立
C.命題乙成立,可推出命題甲成立D.命題乙成立,可推出命題甲不成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓C過定點F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點,且線段PQ的中心點坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列是關(guān)于復(fù)數(shù)的類比推理:
①復(fù)數(shù)的加減法運算可以類比多項式的加減法運算法則;
②由實數(shù)絕對值的性質(zhì)|x|2=x2類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
③已知a,b∈R,若a-b>0,則a>b類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
其中推理結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)具備以下兩個條件:(1)至少有一條對稱軸或一個對稱中心;(2)至少有兩個零點,則稱這樣的函數(shù)為“多元素”函數(shù),下列函數(shù)中為“多元素”函數(shù)的是_______.
①;②;③;④.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. 設(shè)是實數(shù),則“”是“ ”的充分而不必要條件
B. :“,”則有:不存在,
C. 命題“若,則”的否命題為:“若,則”
D. “,”為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.
(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);
(Ⅱ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在和(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com