【題目】已知函數(shù)自然對數(shù)的底數(shù))有兩個零點.

1)求實數(shù)的取值范圍;

2)若的兩個零點分別為,證明:.

【答案】1.2)證明見解析

【解析】

1)將有兩個零點問題,轉(zhuǎn)化為有兩個零點,利用研究的單調(diào)性和零點,由此求得的取值范圍.

2)將所要證明的不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用證得,由此證得不等式成立.

1有兩個零點,等價于有兩個零點,令,則時恒成立,所以時單調(diào)遞增,

所以有兩個零點,等價于有兩個零點.

因為所以

①當(dāng)時,,單調(diào)遞增,不可能有兩個零點;

②當(dāng)時,令,得,單調(diào)遞增;令,得,單調(diào)遞減.

所以.

,得,此時恒成立,沒有零點;

,得,此時有一個零點;

,得,因為,且,,所以,上各存在一個零點,符合題意.

綜上,當(dāng)時,函數(shù)有兩個零點,

即若函數(shù)有兩個零點,則的取值范圍為.

2)要證,只需證,即證,

由(1)知,,所以只需證.

因為,,所以,

所以,只需證.

設(shè),令,則,所以只需證,即證.

,,則,.

即當(dāng)時,成立.

所以,即,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,方程C:表示的曲線被稱作四葉玫瑰線”(如圖)

1)求以極點為圓心的單位圓與四葉玫瑰線交點的極坐標(biāo)和直角坐標(biāo);

2)直角坐標(biāo)系的原點與極點重合,x軸正半軸與極軸重合.求直線l:上的點M與四葉攻瑰線上的點N的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.

(1)求的方程;

(2)若斜率為的直線與橢圓交于,兩點(點,均在第一象限),為坐標(biāo)原點.

①證明:直線的斜率依次成等比數(shù)列.

②若關(guān)于軸對稱,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年7月1日迎來了我國建黨98周年,6名老黨員在這天相約來到革命圣地之一的西柏坡.6名老黨員中有3名黨員當(dāng)年在同一個班,他們站成一排拍照留念時,要求同班的3名黨員站在一起,且滿足條件的每種排法都要拍一張照片,若將照片洗出來,每張照片0.5元(不含過塑費),且有一半的照片需要過塑,每張過塑費為0.75元.若將這些照片平均分給每名老黨員(過塑的照片也要平均分),則每名老黨員需要支付的照片費為( )

A.20.5B.21元C.21.5元D.22元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為徹底打贏脫貧攻堅戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為(

A.4萬元B.5.5萬元C.6.5萬元D.10萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進行調(diào)查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分為五個評分標(biāo)準:1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計結(jié)果如下表(住宿滿意度為,餐飲滿意度為

(1)求“住宿滿意度”分數(shù)的平均數(shù);

(2)求“住宿滿意度”為3分時的5個“餐飲滿意度”人數(shù)的方差;

(3)為提高對酒店的滿意度,現(xiàn)從的會員中隨機抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

1)討論上的單調(diào)性;

2)令,試證明上有且僅有三個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一場突如其來的新冠肺炎疫情在全國蔓延,在黨中央的堅強領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國人民眾志成城、團結(jié)一心,共抗疫情。每天測量體溫也就成為了所有人的一項責(zé)任,一般認為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過37.1℃即為發(fā)熱。發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.

某位患者因發(fā)熱,雖排除肺炎,但也于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱. 住院期間,患者每天上午8:00服藥,護士每天下午16:00為患者測量腋下體溫記錄如下:

抗生素使用情況

沒有使用

使用“抗生素A”治療

使用“抗生素B”治療

日期

12

13

14

15

16

17

18

19

體溫(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用“抗生素C”治療

沒有使用

日期

20

21

22

23

24

25

26

體溫(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)請你計算住院期間該患者體溫不低于39℃的各天體溫平均值;

2)在18日—22日期間,醫(yī)生會隨機選取3天在測量體溫的同時為該患者進行某一特殊項目“項目”的檢查,求至少兩天在高熱體溫下做“項目”檢查的概率;

3)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四面體PABC的棱長均為a,O為正四面體PABC的外接球的球心,過點O作平行于底面ABC的平面截正四面體PABC,得到三棱錐PA1B1C1和三棱臺ABCA1B1C1,那么三棱錐PA1B1C1的外接球的表面積為________.

查看答案和解析>>

同步練習(xí)冊答案