【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若曲線與直線只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)和;(2).
【解析】
試題(1)求點(diǎn)處的切線方程,只要求出導(dǎo)數(shù),則有切線方程為;(2)曲線與直線只有一個(gè)交點(diǎn),說明關(guān)于的方程只有一個(gè)實(shí)根,不可能是根,因此方程可轉(zhuǎn)化為方程只有一個(gè)實(shí)根,這樣問題又轉(zhuǎn)化為函數(shù)的圖象與直線只有一個(gè)交點(diǎn),因此只要研究函數(shù)的單調(diào)性,極值,函數(shù)值變化情況,作出簡圖就可得出結(jié)論.
試題解析:(1),,,所以切線方程為.
(2)曲線與直線只有一個(gè)交點(diǎn),等價(jià)于關(guān)于的方程只有一個(gè)實(shí)根.
顯然,所以方程只有一個(gè)實(shí)根.
設(shè)函數(shù),則.
設(shè),,為增函數(shù),又.
所以當(dāng)時(shí),,為增函數(shù);
當(dāng)時(shí),,為減函數(shù);
當(dāng)時(shí),,為增函數(shù);
所以在時(shí)取極小值.
又當(dāng)趨向于時(shí),趨向于正無窮;
又當(dāng)趨向于負(fù)無窮時(shí),趨向于負(fù)無窮;
又當(dāng)趨向于正無窮時(shí),趨向于正無窮.所以圖象大致如圖所示:
所以方程只有一個(gè)實(shí)根時(shí),實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的食堂中,食堂每天以元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂某天購進(jìn)了80斤米粉,以(單位:斤)(其中)表示米粉的需求量, (單位:元)表示利潤.
(Ⅰ)計(jì)算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);
(Ⅱ) 將表示為的函數(shù);
(Ⅲ)根據(jù)直方圖估計(jì)該天食堂利潤不少于760元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);
(2)若用表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問這個(gè)班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
=, =- ,
樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,若對(duì)于任意實(shí)數(shù)對(duì),存在,使成立,則稱集合是“垂直對(duì)點(diǎn)集”;下列四個(gè)集合中,是“垂直對(duì)點(diǎn)集”的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sinC+cosC=1﹣sin,
(1)求sinC的值;
(2)若△ABC的外接圓面積為(4+)π,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)開發(fā)生產(chǎn)了一種大型電子產(chǎn)品,生產(chǎn)這種產(chǎn)品的年固定成本為2500萬元,每生產(chǎn)百件,需另投入成本(單位:萬元),當(dāng)年產(chǎn)量不足30百件時(shí),;當(dāng)年產(chǎn)量不小于30百件時(shí),;若每件電子產(chǎn)品的售價(jià)為5萬元,通過市場分析,該企業(yè)生產(chǎn)的電子產(chǎn)品能全部銷售完.
(1)求年利潤(萬元)關(guān)于年產(chǎn)量(百件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少百件時(shí),該企業(yè)在這一電子產(chǎn)品的生產(chǎn)中獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個(gè)不相等的正零點(diǎn),求的取值范圍;
(2)若函數(shù)在上的最小值為-3,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)),直線和圓交于,兩點(diǎn).
(1)求圓心的極坐標(biāo);
(2)直線與軸的交點(diǎn)為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com