【題目】空氣質(zhì)量指數(shù)是檢測空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )

A. 該地區(qū)在該月2日空氣質(zhì)量最好

B. 該地區(qū)在該月24日空氣質(zhì)量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負相關(guān)

【答案】D

【解析】

利用折線圖對每一個選項逐一判斷得解.

對于選項A, 由于2日的空氣質(zhì)量指數(shù)最低,所以該地區(qū)在該月2日空氣質(zhì)量最好,所以該選項正確;

對于選項B, 由于24日的空氣質(zhì)量指數(shù)最高,所以該地區(qū)在該月24日空氣質(zhì)量最差,所以該選項正確;

對于選項C,從折線圖上看,該地區(qū)從該月7日到12日持續(xù)增大,所以該選項正確;

對于選項D,從折線圖上看,該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成正相關(guān),所以該選項錯誤.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中,點P在正方體的對角線AB上,點Q在正方體的棱CD上,若P為動點,Q為動點,則PQ的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點、圓.

1)求圓的標準方程;

2)已知,圓軸相交于兩點(點在點的右側(cè))、過點任作一條傾斜角不為0的直線與圓相交于兩點、問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一款智能學習APP,學習內(nèi)容包含文章學習和視頻學習兩類,且這兩類學習互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文章學習積分的概率分布表如表1所示,視頻學習積分的概率分布表如表2所示.

(1)現(xiàn)隨機抽取1人了解學習情況,求其每日學習積分不低于9分的概率;

(2)現(xiàn)隨機抽取3人了解學習情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,(常數(shù)).

(Ⅰ)當的圖象相切時,求的值;

(Ⅱ)設(shè),若存在極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以棱長為1的正方體的三條棱所在直線為坐標軸,建立空間直角坐標系,點在線段上,點在線段.

1)當,且點關(guān)于軸的對稱點為點時,求的長度;

2)當點是面對角線的中點,點在面對角線上運動時,探究的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐P-ABC中,頂點P在底面ABC的投影GABC的外心,PB=BC2,則面PBC與底面ABC所成的二面角的大小為60,則三棱錐PABC的外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)令,若在區(qū)間上不單調(diào),求的取值范圍;

(2)當時,函數(shù)的圖象與軸交于兩點,,且,又的導函數(shù).若正常數(shù),滿足條件,.試比較與0的關(guān)系,并給出理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在底面為梯形的四棱錐S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.

(1)求證:AC⊥SD;

(2)求三棱錐B﹣SAD的體積.

查看答案和解析>>

同步練習冊答案