【題目】已知 .
(Ⅰ)對(duì)一切 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅱ)證明:對(duì)一切 ,都有 成立.

【答案】解:(I) ,則 ,
設(shè) ,則 ,
單調(diào)遞減,② 單調(diào)遞增,
所以 ,對(duì)一切 恒成立,所以 ;
(Ⅱ)問(wèn)題等價(jià)于證明 ,
由(1)可知 的最小值是 ,當(dāng)且僅當(dāng) 時(shí)取到,
設(shè) ,則 ,易知
,當(dāng)且僅當(dāng) 時(shí)取到,
從而對(duì)一切 ,都有 成立
【解析】本題主要考查函數(shù)的單調(diào)性、最值問(wèn)題,以及導(dǎo)數(shù)的應(yīng)用和不等式的證明問(wèn)題。(1)把恒成立的問(wèn)題要利用轉(zhuǎn)化的思想進(jìn)行等價(jià)轉(zhuǎn)化,把不等式2 f ( x ) ≥ g ( x ) 恒成立的問(wèn)題轉(zhuǎn)化為a ≤ 2 ln x + x + 3 /x恒成立的問(wèn)題,進(jìn)而利用導(dǎo)數(shù)求解最小值即可求出a的取值范圍。(2)要證明的不等式問(wèn)題要轉(zhuǎn)化為證明 x ln x > x/ e x 2 /e的問(wèn)題,根據(jù)函數(shù)的單調(diào)性進(jìn)行求解即可。
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下關(guān)于命題的說(shuō)法正確的有(填寫所有正確命題的序號(hào)).
①“若 ,則函數(shù) ,且 )在其定義域內(nèi)是減函數(shù)”是真命題;
②命題“若 ,則 ”的否命題是“若 ,則 ”;
③命題“若 , 都是偶數(shù),則 也是偶數(shù)”的逆命題為真命題;
④命題“若 ,則 ”與命題“若 ,則 ”等價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形 的三個(gè)頂點(diǎn)坐標(biāo)為 , , .
(Ⅰ)求頂點(diǎn) 的坐標(biāo);
(Ⅱ)求四邊形 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中點(diǎn).

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家 和3個(gè)歐洲國(guó)家 中選擇2個(gè)國(guó)家去旅游.
(Ⅰ)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(Ⅱ)若從亞洲國(guó)家和歐洲國(guó)家中各任選1個(gè),求這2個(gè)國(guó)家包括 但不包括 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足 ,它的前項(xiàng)和為,且,

(Ⅰ)求;

(Ⅱ)已知等比數(shù)列滿足, ,設(shè)數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 的方程為 ,直線 的方程為 ,點(diǎn) 在直線 上,過(guò)點(diǎn) 作圓 的切線 ,切點(diǎn)為 .
(1)若點(diǎn) 的坐標(biāo)為 ,求切線 的方程;
(2)求四邊形 面積的最小值;
(3)求證:經(jīng)過(guò) 三點(diǎn)的圓必過(guò)定點(diǎn),并求出所有定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A 過(guò)定點(diǎn) ,且在定圓 的內(nèi)部與其相內(nèi)切.
(1)求動(dòng)圓圓心 的軌跡方程 ;
(2)直線 交于 兩點(diǎn),與圓 交于 兩點(diǎn),求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案