【題目】如圖,在四棱錐中,,平分,平面,,點(diǎn)上,.

(1)求證:平面

(2)若,,求二面角的余弦值.

【答案】(1)見(jiàn)解析.

(2).

【解析】

(1)先根據(jù)平面,再根據(jù)已知,平面,即得,另一方面根據(jù)計(jì)算得,最后根據(jù)線面垂直判定定理得結(jié)論,(2)根據(jù)題意建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解得平面的一個(gè)法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系求結(jié)果.

(1)證明:因?yàn)?/span>平面,所以,

又因?yàn)?/span>,,所以平面

所以

于點(diǎn),則平面,

中,,,設(shè)

易證

因?yàn)?/span>,則

所以,即,

所以平面.

(2)如圖所示,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸,軸正方向,建立空間直角坐標(biāo)系

因?yàn)榇怪逼椒?/span>,所以為直角三角形的斜邊上的中線

所以

因?yàn)?/span>,由,得

設(shè)平面的一個(gè)法向量為,

,取,則,

由(1)可知為平面的一個(gè)法向量,

所以

由圖可知,所求二面角為銳角

所以所求二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司做了用戶(hù)對(duì)其產(chǎn)品滿(mǎn)意度的問(wèn)卷調(diào)查,隨機(jī)抽取了20名用戶(hù)的評(píng)分,得到圖3所示莖葉圖,對(duì)不低于75的評(píng)分,認(rèn)為用戶(hù)對(duì)產(chǎn)品滿(mǎn)意,否則,認(rèn)為不滿(mǎn)意,

(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯(cuò)的概率不超過(guò)5%的前提下,你是否認(rèn)為“滿(mǎn)意與否”與“性別”有關(guān)?

附:

(Ⅱ) 估計(jì)用戶(hù)對(duì)該公司的產(chǎn)品“滿(mǎn)意”的概率;

(Ⅲ) 該公司為對(duì)客戶(hù)做進(jìn)一步的調(diào)查,從上述對(duì)其產(chǎn)品滿(mǎn)意的用戶(hù)中再隨機(jī)選取2人,求這兩人都是男用戶(hù)或都是女用戶(hù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)在軸上,且短軸的兩個(gè)頂點(diǎn)與其中一個(gè)焦點(diǎn)的連線構(gòu)成斜邊為的等腰直角三角形.

(1)求橢圓的方程;

(2)動(dòng)直線交橢圓兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以線段為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引大家,規(guī)定:購(gòu)買(mǎi)一定價(jià)值的商品可以獲得一張獎(jiǎng)券,獎(jiǎng)券上有一個(gè)兌獎(jiǎng)號(hào)碼,可以分別參加兩次抽獎(jiǎng)方式相同的兌獎(jiǎng)活動(dòng),已知甲有一張?jiān)撋虉?chǎng)的獎(jiǎng)券,且每次兌獎(jiǎng)活動(dòng)的中獎(jiǎng)概率都是0.05,求:

1)甲中兩次獎(jiǎng)的概率;

2)甲中一次獎(jiǎng)的概率;

3)甲不中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為調(diào)查會(huì)員某年度上半年的消費(fèi)情況制作了有獎(jiǎng)?wù){(diào)查問(wèn)卷發(fā)放給所有會(huì)員,并從參與調(diào)查的會(huì)員中隨機(jī)抽取名了解情況并給予物質(zhì)獎(jiǎng)勵(lì).調(diào)查發(fā)現(xiàn)抽取的名會(huì)員消費(fèi)金額(單位:萬(wàn)元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費(fèi)金額分成組,制作成如下的頻率分布直方圖.

(1)求該名會(huì)員上半年消費(fèi)金額的平均值與中位數(shù);(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值)

(2)現(xiàn)采用分層抽樣的方式從前組中選取人進(jìn)行消費(fèi)愛(ài)好調(diào)查,然后再?gòu)那?/span>組選取的人中隨機(jī)選人,求這人都來(lái)自第組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列與數(shù)列滿(mǎn)足,,且.

1)求數(shù)列的通項(xiàng)公式;

2)記,的前n項(xiàng)的和分別為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體,過(guò)對(duì)角線作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中)在點(diǎn)處的切線斜率為1.

(1)用表示;

(2)設(shè),若對(duì)定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;

(3)在(2)的前提下,如果,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過(guò),直線與橢圓交于,兩點(diǎn)(,兩點(diǎn)不是左右頂點(diǎn)),若直線的斜率為時(shí),弦的中點(diǎn)在直線上.

(Ⅰ)求橢圓的方程.

(Ⅱ)若以,兩點(diǎn)為直徑的圓過(guò)橢圓的右頂點(diǎn),則直線是否經(jīng)過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案