【題目】

已知二項式的展開式中前三項的系數(shù)成等差數(shù)列.

(1)的值;

(2)設(shè).

的值;

的值;

的最大值.

【答案】(1)由題設(shè),得………………………………2

,解得n8,n1(舍去). ……………………3

(2)①,……………………4

在等式的兩邊取,……………6

(3)設(shè)第r1項的系數(shù)最大,則……………8

解得r2r3…………………………9

所以系數(shù)最大值為………………10

【解析】

:1)由題設(shè),得………………………3

,解得n8n1(舍去).……………………4

(2) ①,………………………6

在等式的兩邊取,………8

設(shè)第r1項的系數(shù)最大,則…………………10

解得r2r3

所以系數(shù)最大值為………………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中,,,,為線段的中點.

)證明:平面;

)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 ,其前項和為,滿足

)求的通項公式;

)記求數(shù)列的前項和,并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).是曲線上的動點,將線段點順時針旋轉(zhuǎn)得到線段,設(shè)點的軌跡為曲線.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(I)求曲線的極坐標(biāo)方程;

(II)在(I)的條件下,若射線與曲線,分別交于兩點(除極點外),且有定點,求面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn-n=2an-2),(nN*

1)證明:數(shù)列{an-1}為等比數(shù)列.

2)若bn=anlog2an-1),數(shù)列{bn}的前項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點外賣現(xiàn)已成為上班族解決午餐問題的一種流行趨勢.某配餐店為擴大品牌影響力,決定對新顧客實行讓利促銷,規(guī)定:凡點餐的新顧客均可獲贈10元或者16元代金券一張,中獎率分別為,每人限點一餐,且100%中獎.現(xiàn)有A公司甲、乙、丙、丁四位員工決定點餐試吃.

(Ⅰ) 求這四人中至多一人抽到16元代金券的概率;

(Ⅱ) 這四人中抽到10元、16元代金券的人數(shù)分別用、表示,記,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個年級各抽取10名志愿者參賽。在規(guī)定時間內(nèi),他們檢索到的圖書冊數(shù)的莖葉圖如圖所示,規(guī)定冊數(shù)不小于20的為優(yōu)秀.

() 從兩個年級的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;

() 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體中,分別為所在線段的中點,則滿足的圖形為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,且,其前項和為,且為等比數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,記數(shù)列的前項和為.設(shè)是整數(shù),問是否存在正整數(shù),使等式成立?若存在,求出和相應(yīng)的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案