【題目】某工廠的一臺(tái)某型號(hào)機(jī)器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機(jī)器處于故障狀態(tài),則停機(jī)檢修.為了檢查機(jī)器工作狀態(tài)是否正常,工廠隨機(jī)統(tǒng)計(jì)了該機(jī)器以往正常工作狀態(tài)下生產(chǎn)的1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,得出如圖1所示頻率分布直方圖.由統(tǒng)計(jì)結(jié)果可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的平均數(shù),近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值為代表).若產(chǎn)品的質(zhì)量指標(biāo)值全部在之內(nèi),就認(rèn)為機(jī)器處于正常狀態(tài),否則,認(rèn)為機(jī)器處于故障狀態(tài).

1)下面是檢驗(yàn)員在一天內(nèi)從該機(jī)器生產(chǎn)的產(chǎn)品中隨機(jī)抽取10件測(cè)得的質(zhì)量指標(biāo)值:

29 45 55 63 67 73 78 87 93 113

請(qǐng)判斷該機(jī)器是否出現(xiàn)故障?

2)若機(jī)器出現(xiàn)故障,有2種檢修方案可供選擇:

方案一:加急檢修,檢修公司會(huì)在當(dāng)天排除故障,費(fèi)用為700元;

方案二:常規(guī)檢修,檢修公司會(huì)在七天內(nèi)的任意一天來(lái)排除故障,費(fèi)用為200.

現(xiàn)需決策在機(jī)器出現(xiàn)故障時(shí),該工廠選擇何種方案進(jìn)行檢修,為此搜集檢修公司對(duì)該型號(hào)機(jī)器近100單常規(guī)檢修在第i,2,,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機(jī)器正常工作一天可收益200元,故障機(jī)器檢修當(dāng)天不工作,若機(jī)器出現(xiàn)故障,該選擇哪種檢修方案?

附:,,.

【答案】1)可判斷該機(jī)器處于故障狀態(tài);(2)選擇加急檢修更為適合

【解析】

1)由圖1可估計(jì)1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的平均數(shù)和方差,所以,,從而得到產(chǎn)品的質(zhì)量指標(biāo)值允許落在的范圍為(28.87,111.13),由于抽取產(chǎn)品質(zhì)量指標(biāo)值出現(xiàn)了113,不在(28.87,111.13)之內(nèi),故機(jī)器處于故障狀態(tài);
2)方案一:工廠需要支付檢修費(fèi)和損失收益之和為700200900元;方案二:設(shè)損失收益為元,求出的可能值,然后由圖2可得出每個(gè)的取值所對(duì)應(yīng)的概率,求出數(shù)學(xué)期望,可得工廠需要支付檢修費(fèi)和損失收益之和,與900對(duì)比,即可得出結(jié)論.

1)由圖1可估計(jì)1000個(gè)產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)和方差分別為

,

,

依題意知,,

所以,,

所以產(chǎn)品質(zhì)量指標(biāo)值允許落在的范圍為,

又抽取產(chǎn)品質(zhì)量指標(biāo)值出現(xiàn)了113,不在之內(nèi),

故可判斷該機(jī)器處于故障狀態(tài)

2)方案一:若安排加急檢修,工廠需要支付檢修費(fèi)和損失收益之和為元;

方案二:若安排常規(guī)檢修,工廠需要要支付檢修費(fèi)為200元,

設(shè)損失收益為X元,則X的可能取值為200400,600800,1000,12001400,

X的分布列為:

X

200

400

600

800

1000

1200

1400

P

0.07

0.18

0.25

0.20

0.15

0.12

0.03

故需要支付檢修費(fèi)和損失收益之和為元,

因?yàn)?/span>,所以當(dāng)機(jī)器出現(xiàn)故障,選擇加急檢修更為適合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn).x軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(Ⅱ)射線與曲線C2交于O,P兩點(diǎn),射線與曲線C1交于點(diǎn)Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)若存在x0∈Rf(x0)x0成立,則稱x0f(x)的不動(dòng)點(diǎn).已知f(x)ax2(b1)xb1(a≠0)

(1)當(dāng)a1b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(2)的條件下,若yf(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線ykx對(duì)稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習(xí)慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由位同學(xué)組成四個(gè)宣傳小組,其中可回收物宣傳小組有位同學(xué),其余三個(gè)宣傳小組各有位同學(xué).現(xiàn)從這位同學(xué)中選派人到某小區(qū)進(jìn)行宣傳活動(dòng),則每個(gè)宣傳小組至少選派人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為,且滿足,,.

1)求數(shù)列{an}的通項(xiàng)公式;

2)記.

①求Tn;

②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明每天從家步行去學(xué)校,有兩條路線可以選擇,第一條路線,需走天橋,不用等紅燈,平均用時(shí)910秒;第二條路線,要經(jīng)過(guò)兩個(gè)紅綠燈路口,如圖,A處為小明家,D處為學(xué)校,走路段240秒,在B處有一紅綠燈,紅燈時(shí)長(zhǎng)120秒,綠燈時(shí)長(zhǎng)30秒,走路段450秒,在C處也有一紅綠燈,紅燈時(shí)長(zhǎng)100秒,綠燈時(shí)長(zhǎng)50秒,走路段200.小明進(jìn)行了60天的試驗(yàn),每天都選擇第二條路線,并記錄了在B處等待紅燈的時(shí)長(zhǎng),經(jīng)統(tǒng)計(jì),60天中有48天在B處遇到紅燈,根據(jù)記錄的48天等待紅燈時(shí)長(zhǎng)的數(shù)據(jù)繪制了下面的頻率分布直方圖.已知B處和C處的紅燈亮起的時(shí)刻恰好始終保持相同,且紅綠燈之間切換無(wú)時(shí)間間隔.

1)若小明選擇第二條路線,設(shè)當(dāng)小明到達(dá)B處的時(shí)刻為B處紅燈亮起后的第x秒()時(shí),小明在B處等待紅燈的時(shí)長(zhǎng)為y秒,求y關(guān)于x的函數(shù)的解析式;

2)若小明選擇第二條路線,請(qǐng)估計(jì)小明在B處遇到紅燈的概率,并問(wèn)小明是否可能在B處和C處都遇到紅燈;

3)若取區(qū)間中點(diǎn)作為該區(qū)間對(duì)應(yīng)的等待紅燈的時(shí)長(zhǎng),以這兩條路線的平均用時(shí)作為決策依據(jù),小明應(yīng)選擇哪一條路線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是2020215日至32日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說(shuō)法不正確的是(

A.2020219日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)

B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低

C.2020219日至32日武漢市新增新冠肺炎確診病例低于400人的有8

D.2020215日到32日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對(duì)產(chǎn)品做檢驗(yàn).廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐械拿考a(chǎn)品合格的概率為0.8,從中任意取出4件進(jìn)行檢驗(yàn),求至少有1件是合格品的概率;

2)若廠家發(fā)給商家20件產(chǎn)品,其中有3件不合格.按合同規(guī)定該商家從中任取2件,都進(jìn)行檢驗(yàn),只有2件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案