【題目】

在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求C的普通方程和l的傾斜角;

2)設(shè)點(diǎn),lC交于A,B兩點(diǎn),求.

【答案】(1) .. (2) .

【解析】

1)直接利用參數(shù)方程和極坐標(biāo)方程公式得到普通方程,再計(jì)算傾斜角.

2)判斷點(diǎn)在直線l上,建立直線參數(shù)方程,代入橢圓方程,利用韋達(dá)定理得到答案.

1消去參數(shù)α

C的普通方程為.

,得,(*

,代入(*),化簡(jiǎn)得,

所以直線l的傾斜角為.

2)由(1),知點(diǎn)在直線l上,可設(shè)直線l的參數(shù)方程為t為參數(shù)),

t為參數(shù)),

代入并化簡(jiǎn),得,

,

設(shè)AB兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,

,

所以,,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線定位法是通過(guò)測(cè)定待定點(diǎn)到至少三個(gè)已知點(diǎn)的兩個(gè)距離差所進(jìn)行的一種無(wú)線電定位.通過(guò)船(待定點(diǎn))接收到三個(gè)發(fā)射臺(tái)的電磁波的時(shí)間差計(jì)算出距離差,兩個(gè)距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來(lái)看一種簡(jiǎn)單的特殊狀況;如圖所示,已知三個(gè)發(fā)射臺(tái)分別為,,且剛好三點(diǎn)共線,已知海里,海里,現(xiàn)以的中點(diǎn)為原點(diǎn),所在直線為軸建系.現(xiàn)根據(jù)船接收到點(diǎn)與點(diǎn)發(fā)出的電磁波的時(shí)間差計(jì)算出距離差,得知船在雙曲線的左支上,根據(jù)船接收到臺(tái)和臺(tái)電磁波的時(shí)間差,計(jì)算出船發(fā)射臺(tái)的距離比到發(fā)射臺(tái)的距離遠(yuǎn)30海里,則點(diǎn)的坐標(biāo)(單位:海里)為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程4個(gè)不同的實(shí)數(shù)根,則k的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有道數(shù)學(xué)題,其中道選擇題, 道填空題,小明從中任取道題,求

1)所取的道題都是選擇題的概率;

2)所取的道題不是同一種題型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在它們的交點(diǎn)處具有相同的切線.

1)求的解析式;

2)若函數(shù)有兩個(gè)極值點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當(dāng)時(shí), 上存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F.

1)求點(diǎn)F的坐標(biāo)和橢圓C的離心率;

2)直線過(guò)點(diǎn)F,且與橢圓C交于P,Q兩點(diǎn),如果點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為,判斷直線是否經(jīng)過(guò)x軸上的定點(diǎn),如果經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);如果不經(jīng)過(guò),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,底面,,為棱的中點(diǎn),為棱的動(dòng)點(diǎn).

1)求證:平面;

2)若二面角的余弦值為,求點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案