【題目】已知函數(shù)的圖象在它們的交點(diǎn)處具有相同的切線.

1)求的解析式;

2)若函數(shù)有兩個(gè)極值點(diǎn),且,求的取值范圍.

【答案】1;(2

【解析】

1)求得兩個(gè)函數(shù)的導(dǎo)數(shù),由公切線的斜率相同可得的方程;將切點(diǎn)代入兩個(gè)函數(shù),可得的方程;聯(lián)立兩個(gè)方程即可求得的值,進(jìn)而得的解析式;

2)將的解析式代入并求得,由極值點(diǎn)定義可知,是方程的兩個(gè)不等實(shí)根,由韋達(dá)定理表示出,結(jié)合可得.代入中化簡(jiǎn),分離參數(shù)并構(gòu)造函數(shù),求得并令求得極值點(diǎn),由極值點(diǎn)兩側(cè)符號(hào)判斷單調(diào)性,并求得最小值,代入端點(diǎn)值求得最大值,即可求得的取值范圍.

1)根據(jù)題意,函數(shù)

可知,

兩圖象在點(diǎn)處有相同的切線,

所以兩個(gè)函數(shù)切線的斜率相等,即,化簡(jiǎn)得,

代入兩個(gè)函數(shù)可得,

綜合上述兩式可解得

所以.

2)函數(shù),定義域?yàn)?/span>

,

因?yàn)?/span>為函數(shù)的兩個(gè)極值點(diǎn),

所以是方程的兩個(gè)不等實(shí)根,

由根與系數(shù)的關(guān)系知,

又已知,所以,

,

式代入得

,

,

,令,解得,

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

所以,

,

的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線定位法是通過(guò)測(cè)定待定點(diǎn)到至少三個(gè)已知點(diǎn)的兩個(gè)距離差所進(jìn)行的一種無(wú)線電定位.通過(guò)船(待定點(diǎn))接收到三個(gè)發(fā)射臺(tái)的電磁波的時(shí)間差計(jì)算出距離差,兩個(gè)距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來(lái)看一種簡(jiǎn)單的特殊狀況;如圖所示,已知三個(gè)發(fā)射臺(tái)分別為,,且剛好三點(diǎn)共線,已知海里,海里,現(xiàn)以的中點(diǎn)為原點(diǎn),所在直線為軸建系.現(xiàn)根據(jù)船接收到點(diǎn)與點(diǎn)發(fā)出的電磁波的時(shí)間差計(jì)算出距離差,得知船在雙曲線的左支上,若船上接到臺(tái)發(fā)射的電磁波比臺(tái)電磁波早(已知電磁波在空氣中的傳播速度約為,1海里),則點(diǎn)的坐標(biāo)(單位:海里)為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)6個(gè)零點(diǎn)(互不相同),則實(shí)數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線和直線的直角坐標(biāo)方程;

(Ⅱ)直線軸交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為,以橢圓的上頂點(diǎn)為圓心作圓,

,圓與橢圓在第一象限交于點(diǎn),在第二象限交于點(diǎn).

(1)求橢圓的方程;

(2)求的最小值,并求出此時(shí)圓的方程;

(3)設(shè)點(diǎn)是橢圓上異于的一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:

為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求C的普通方程和l的傾斜角;

2)設(shè)點(diǎn),lC交于A,B兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列同時(shí)滿足下列條件:

;② ;③的因數(shù)().

(Ⅰ)當(dāng)時(shí),寫出數(shù)列的前五項(xiàng);

(Ⅱ)若數(shù)列的前三項(xiàng)互不相等,且時(shí), 為常數(shù),求的值;

(Ⅲ)求證:對(duì)任意正整數(shù),存在正整數(shù),使得時(shí), 為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的運(yùn)動(dòng)方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來(lái)估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過(guò)5000步的有人,超過(guò)10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)的直角坐標(biāo)為為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,直線的極坐標(biāo)方程為

(1)試求出動(dòng)點(diǎn)的軌跡方程(用普通方程表示)

(2)設(shè)點(diǎn)對(duì)應(yīng)的軌跡為曲線,若曲線上存在四個(gè)點(diǎn)到直線的距離為1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案