【題目】若數(shù)列,滿足,則稱為數(shù)列的“偏差數(shù)列”.
(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說明理由;
(2)若無窮數(shù)列是各項(xiàng)均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;
(3)設(shè),為數(shù)列的“偏差數(shù)列”,,且若對任意恒成立,求實(shí)數(shù)的最小值.
【答案】(1)答案見解析(2)或(3)
【解析】
(1)設(shè),根據(jù),可得,滿足為數(shù)列的“偏差數(shù)列,但此時(shí)不是等差數(shù)列,故可得出不一定是等差數(shù)列;
(2)設(shè)數(shù)列的公比為,解方程可得首項(xiàng)和公比,由等比數(shù)列的通項(xiàng)公式和求和公式,計(jì)算可得所求值;
(3)由累加法可得數(shù)列的通項(xiàng)公式.討論為奇數(shù)或偶數(shù),求得極限,由不等式恒成立思想可得的最小值.
(1)設(shè) ,根據(jù)
即:得:
滿足為數(shù)列的“偏差數(shù)列,
但此時(shí)不是等差數(shù)列,故可得出不一定是等差數(shù)列.
(2)設(shè)數(shù)列的公比為,則由題意,,均為正整數(shù)
因?yàn)?/span>,所以
解得或
故或
①當(dāng)時(shí),,
②當(dāng)時(shí),,
綜上所述:的值為:或
(3)且
得:
故有:
累加得:
又所以
當(dāng)為奇數(shù)時(shí),單調(diào)遞增,,,
當(dāng)為偶數(shù)時(shí),單調(diào)遞減,,,
從而,所以
所以的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展勞動實(shí)習(xí),學(xué)生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點(diǎn),B是圓弧AB與直線BC的切點(diǎn),四邊形DEFG為矩形,BC⊥DG,垂足為C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直線DE和EF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列與滿足,.
(1)若,且,求的通項(xiàng)公式;
(2)設(shè)的第項(xiàng)是最大項(xiàng),即,求證:的第項(xiàng)是最大項(xiàng);
(3)設(shè),求的取值范圍,使得有最大值與最小值,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在雙曲線的右支上存在點(diǎn),使得點(diǎn)與雙曲線的左、右焦點(diǎn),形成的三角形的內(nèi)切圓的半徑為,若的重心滿足,則雙曲線的離心率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,),,且函數(shù)圖像上的任意兩條對稱軸之間距離的最小值是.
(1)求的值和的單調(diào)增區(qū)間;
(2)將函數(shù)的圖像向右平移個(gè)單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為.為的右焦點(diǎn),為上一點(diǎn),軸,的半徑為.
(1)求和的方程;
(2)若直線與交于兩點(diǎn),與交于兩點(diǎn),其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水庫的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn)(用t表示第t月份,),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量V(單位:億立方米)與時(shí)間t的近似函數(shù)關(guān)系為:當(dāng)0<t≤10時(shí),;當(dāng)10<t≤12時(shí),;若2月份該水庫的蓄水量為33.6億立方米.
(1)求實(shí)數(shù)a的值;
(2)求一年內(nèi)該水庫的最大蓄水量.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號平方再除以2,奇數(shù)項(xiàng)是序號平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com