【題目】已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數是( )
①與點距離為的點形成一條曲線,則該曲線的長度是;
②若面,則與面所成角的正切值取值范圍是;
③若,則在該四棱柱六個面上的正投影長度之和的最大值為.
A.B.C.D.
【答案】C
【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.
如圖:
①錯誤, 因為 ,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;
②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最。為下底面面對角線的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;
③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.
故選:.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為,(t為參數),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C1:ρ=2cosθ,.
(1)求C1與C2交點的直角坐標;
(2)若直線l與曲線C1,C2分別相交于異于原點的點M,N,求|MN|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今有6個人組成的旅游團,包括4個大人,2個小孩,去廬山旅游,準備同時乘纜車觀光,現有三輛不同的纜車可供選擇,每輛纜車最多可乘3人,為了安全起見,小孩乘纜車必須要大人陪同,則不同的乘車方式有_____種.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓的參數方程為(為參數),以為極點,軸的非負半軸為極軸建極坐標系,直線的極坐標方程為
(Ⅰ)求的極坐標方程;
(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設二次函數.
(1)若,求的解析式;
(2)當,時,對任意的,恒成立,求實數的取值范圍;
(3)設函數在兩個不同零點,將關于的不等式的解集記為.已知函數的最小值為,且函數在上不存在最小值,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠,兩條相互獨立的生產線生產同款產品,在產量一樣的情況下通過日常監(jiān)控得知,生產線生產的產品為合格品的概率分別為和.
(1)從,生產線上各抽檢一件產品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假設不合格的產品均可進行返工修復為合格品,以(1)中確定的作為的值.
①已知,生產線的不合格產品返工后每件產品可分別挽回損失元和元。若從兩條生產線上各隨機抽檢件產品,以挽回損失的平均數為判斷依據,估計哪條生產線挽回的損失較多?
②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現從,生產線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產一件產品的利潤為,求的分布列并估算該廠產量件時利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是國家統(tǒng)計局公布的2013-2018年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是( )
A.2014年我國入境游客萬人次最少
B.后4年我國入境游客萬人次呈逐漸增加趨勢
C.這6年我國入境游客萬人次的中位數大于13340萬人次
D.前3年我國入境游客萬人次數據的方差小于后3年我國入境游客萬人次數據的方差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)已知點,直線與軸正半軸交于點,與曲線交于,兩點,且,,成等比數列,求直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮.廣元某景點設有共享電動車租車點,共享電動車的收費標準是每小時2元(不足1小時的部分按1小時計算).甲、乙兩人各租一輛電動車,若甲、乙不超過一小時還車的概率分別為,;一小時以上且不超過兩小時還車的概率分別為,;兩人租車時間都不會超過三小時.
(1)求甲、乙兩人所付租車費用相同的概率;
(2)求甲、乙兩人所付的租車費用之和大于或等于8的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com