科目: 來源: 題型:
【題目】已知函數(shù).
(1)證明在區(qū)間內有且僅有唯一實根;
(2)記在區(qū)間內的實根為,函數(shù),若方程在區(qū)間有兩不等實根,證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為,過點與軸垂直的直線交橢圓于兩點, 的面積為,橢圓的離心率為.
(1)求橢圓的標準方程;
(2)已知為坐標原點,直線與軸交于點,與橢圓交于兩個不同的點,若,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在上有最大值和最小值,設(為自然對數(shù)的底數(shù)).
(1)求的值;
(2)若不等式在上有解,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設命題:實數(shù)滿足不等式,命題:函數(shù)無極值點.
(1)若“”為假命題,“”為真命題,求實數(shù)的取值范圍;
(2)已知“”為真命題,并記為,且:,若是的必要不充分條件,求正整數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。
若將運動員按成績由好到差編為1—35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運動員人數(shù)為
A.6B.5C.4D.3
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)濟訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(元)關于每次訂貨(單位)的函數(shù)關系,其中為年需求量,為每單位物資的年存儲費,為每次訂貨費. 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費為120元/年,每次訂貨費為2500元.
(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費;
(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費最少?最少費用為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】南充高中扎實推進陽光體育運動,積極引導學生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學生稱為“鍛煉達人”.
(1)將頻率視為概率,估計我校7000名學生中“鍛煉達人”有多少?
(2)從這100名學生的“鍛煉達人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com