科目: 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,能對農作物造成嚴重傷害,每只紅鈴蟲的平均產卵數y和平均溫度x有關,現(xiàn)收集了以往某地的7組數據,得到下面的散點圖及一些統(tǒng)計量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產卵數/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據散點圖判斷,與(其中自然對數的底數)哪一個更適宜作為平均產卵數y關于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數據,求出y關于x的回歸方程.(計算結果精確到小數點后第三位)
(2)根據以往統(tǒng)計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應的概率p.
②當取最大值時,記該地今后5年中,需要人工防治的次數為X,求X的數學期望和方差.
附:線性回歸方程系數公式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(點在第二象限),是橢圓上位于直線兩側的動點,若,求證:直線的斜率為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數學中,布勞威爾不動點定理是拓撲學里一個非常重要的不動點定理,它可應用到有限維空間,并構成一般不動點定理的基石.布勞威爾不動點定理得名于荷蘭數學家魯伊茲·布勞威爾(L.E. J. Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數,存在一個點,使得,那么我們稱該函數為“不動點”函數,下列為“不動點”函數的是( )
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動直線:與軸交于點,過點作直線,交軸于點,點滿足,的軌跡為.
(1)求的方程;
(2)已知點,點,過作斜率為的直線交于,兩點,延長,分別交于,兩點,記直線的斜率為,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)打算處理一批產品,這些產品每箱100件,以箱為單位銷售.已知這批產品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應的概率均為0.5.假設該產品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產品中正品的價格期望值作為決策依據.
(1)在不開箱檢驗的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機從一箱中抽取2件產品進行檢驗.
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數為,求的分布列和數學期望;
②若已發(fā)現(xiàn)在抽取檢驗的2件產品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目: 來源: 題型:
【題目】梯形中,,,,,過點作,交于(如圖1).現(xiàn)沿將折起,使得,得四棱錐(如圖2).
(1)求證:平面平面;
(2)若為的中點,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知不等式|2x-1|+|2x-2|<x+3的解集是A.
(Ⅰ)求集合A;
(Ⅱ)設x,y∈A,對任意a∈R,求證:xy(||x+a|-|y+a||)<x2+y2.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com