相關(guān)習(xí)題
 0  266177  266185  266191  266195  266201  266203  266207  266213  266215  266221  266227  266231  266233  266237  266243  266245  266251  266255  266257  266261  266263  266267  266269  266271  266272  266273  266275  266276  266277  266279  266281  266285  266287  266291  266293  266297  266303  266305  266311  266315  266317  266321  266327  266333  266335  266341  266345  266347  266353  266357  266363  266371  266669 

科目: 來源: 題型:

【題目】如圖拋物線的焦點(diǎn)為為拋物線上一點(diǎn)(軸上方),點(diǎn)到軸的距離為4.

1)求拋物線方程及點(diǎn)的坐標(biāo);

2)是否存在軸上的一個(gè)點(diǎn),過點(diǎn)有兩條直線,滿足,交拋物線兩點(diǎn).與拋物線相切于點(diǎn)不為坐標(biāo)原點(diǎn)),有成立,若存在,求出點(diǎn)的坐標(biāo).若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在幾何體中,平面底面,四邊形是正方形,,的中點(diǎn),且

1)證明://平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙、丙、丁四個(gè)人到,,三個(gè)景點(diǎn)旅游,每個(gè)人只去一個(gè)景點(diǎn),每個(gè)景點(diǎn)至少有一個(gè)人去,則甲不到景點(diǎn)的方案有(

A.18B.12C.36D.24

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知ban2n(b1)Sn.

(1)證明:當(dāng)b2時(shí),{ann·2n1}是等比數(shù)列;

(2){an}的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某車間生產(chǎn)甲、乙兩種產(chǎn)品,已知制造一件甲產(chǎn)品需要種元件5個(gè),種元件2個(gè),制造一件乙種產(chǎn)品需要種元件3個(gè),種元件3個(gè),現(xiàn)在只有種元件180個(gè),種元件135個(gè),每件甲產(chǎn)品可獲利潤20元,每件乙產(chǎn)品可獲利潤15元,試問在這種條件下,應(yīng)如何安排生產(chǎn)計(jì)劃才能得到最大利潤?

查看答案和解析>>

科目: 來源: 題型:

【題目】某人準(zhǔn)備投資1200萬元辦一所中學(xué),為了考慮社會(huì)效益和經(jīng)濟(jì)效益,對該地區(qū)教育市場進(jìn)行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級(jí)為單位).

市場調(diào)查表:

班級(jí)學(xué)生數(shù)

配備教師數(shù)

硬件建設(shè)費(fèi)(萬元)

教師年薪(萬元)

初中

50

2.0

28

1.2

高中

40

2.5

58

1.6

根據(jù)物價(jià)部門的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費(fèi)標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計(jì)除書本費(fèi)、辦公費(fèi)外,初中每人每年可收取600.高中每人每年可收取1500.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以2030個(gè)班為宜(含20個(gè)班與30個(gè)),教師實(shí)行聘任制.初、高中教育周期均為三年,設(shè)初中編制為個(gè)班,高中編制為個(gè)班,請你合理地安排招生計(jì)劃,使年利潤最大.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對邊的邊長分別是,已知,

的面積等于,求

,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】極坐標(biāo)與參數(shù)方程

在直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).在以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系中,曲線 .

(1)當(dāng) 時(shí),判斷直線與曲線的位置關(guān)系;

(2)當(dāng)時(shí),若直線與曲相交于, 兩點(diǎn),設(shè),且,求直線的傾斜角.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

I)討論上的單調(diào)性;

(Ⅱ)若對任意的正整數(shù)n都有成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案