科目: 來(lái)源: 題型:
【題目】已知點(diǎn)、點(diǎn)及拋物線.
(1)若直線過(guò)點(diǎn)及拋物線上一點(diǎn),當(dāng)最大時(shí)求直線的方程;
(2)軸上是否存在點(diǎn),使得過(guò)點(diǎn)的任一條直線與拋物線交于點(diǎn),且點(diǎn)到直線的距離相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).由2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,)
A.2B.4C.6D.8
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有100多年.龍眼干的級(jí)別按直徑的大小分為四個(gè)等級(jí)(如下表).
級(jí)別 | 三級(jí)品 | 二級(jí)品 | 一級(jí)品 | 特級(jí)品 |
某商家為了解某農(nóng)場(chǎng)一批龍眼干的質(zhì)量情況,隨機(jī)抽取了100個(gè)龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計(jì)得到這些龍眼干的直徑的頻數(shù)分布表如下:
頻數(shù) | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級(jí)品和特級(jí)品中抽取6個(gè),其中一級(jí)品有2個(gè).
(1)求、的值,并估計(jì)這批龍眼干中特級(jí)品的比例;
(2)已知樣本中的100個(gè)龍眼干約500克,該農(nóng)場(chǎng)有500千克龍眼干待出售,商家提出兩種收購(gòu)方案:
方案:以60元/千克收購(gòu);
方案:以級(jí)別分裝收購(gòu),每袋100個(gè),特級(jí)品40元/袋、一級(jí)品30元/袋、二級(jí)品20元/袋、三級(jí)品10元/袋.
用樣本的頻率分布估計(jì)總體分布,哪個(gè)方案農(nóng)場(chǎng)的收益更高?并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知點(diǎn)、點(diǎn)及拋物線.
(1)若直線過(guò)點(diǎn)及拋物線上一點(diǎn),當(dāng)最大時(shí)求直線的方程;
(2)軸上是否存在點(diǎn),使得過(guò)點(diǎn)的任一條直線與拋物線交于點(diǎn),且點(diǎn)到直線的距離相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).由2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,)
A.2B.4C.6D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com