【題目】某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價格元千克滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關系,如下表:
銷售價格元千克 | 2 | 4 | 10 | |
市場需求量百千克 | 12 | 10 | 4 |
已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克
求q與x的函數(shù)關系式;
當產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;
當產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.
求廠家獲得的利潤百元與銷售價格x的函數(shù)關系式;
當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本
【答案】(1) ;(2);(3);當時,廠家獲得的利潤y隨銷售價格x的上漲而增加.
【解析】
(1)直接利用待定系數(shù)法求出一次函數(shù)解析式進而得出答案;
(2)由題意可得:p≤q,進而得出x的取值范圍;
(3)①利用頂點式求出函數(shù)最值得出答案;
②利用二次函數(shù)的增減性得出答案即可.
(1)設q=kx+b(k,b為常數(shù)且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:,∴q與x的函數(shù)關系式為:q=﹣x+14;
(2)當產(chǎn)量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①當產(chǎn)量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;
②∵當x時,y隨x的增加而增加.
又∵產(chǎn)量大于市場需求量時,有4<x≤10,∴當4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設排球的個數(shù)為m,總費用為y元.
①求y關于m的函數(shù)關系式,并求m可取的所有值;
②在學校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(A在B的左側),與y的正半軸交于點C,連結BC,二次函數(shù)的對稱軸與x軸的交點為E.
(1)拋物線的對稱軸與x軸的交點E坐標為_____,點A的坐標為_____;
(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點,過點Q作y軸的平行線,與直線BC交于點M,與拋物線交于點N,連結CN,將△CMN沿CN翻折,M的對應點為M′.在圖②中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.
請結合統(tǒng)計圖,回答下列問題:
(1)本次調(diào)查學生共 人, = ,并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發(fā),沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒個單位長度,設第n秒運動到點K,為自然數(shù),則的坐標是____,的坐標是____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚我國古代數(shù)學發(fā)展的偉大成就,某校九年級進行了一次數(shù)學知識競賽,并設立了以我國古代數(shù)學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學生成績統(tǒng)計表:
“祖沖之獎”的學生成績統(tǒng)計表:
分數(shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;
獲得“祖沖之獎”的學生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“”,“”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了方便學生在上下學期間安全過馬路,南岸區(qū)政府決定在南開(融僑)中學校門口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學生小劉想利用所學知識測量天橋頂棚距地面的高度.天橋入口A點有一臺階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺階CD,EF,其長度相等且坡度均為i=4:3,頂棚距天橋距離FG=2m,且小劉從入口A點測得頂棚頂端G的仰角為37°,請根據(jù)以上數(shù)據(jù),幫小劉計算出頂端G點距地面高度為( 。m.(結果保留一位小數(shù),參考數(shù)據(jù):≈1.73,sin37°≈,cos37°≈,tan37°≈)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:
頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a=____,b=____;
(2)補全頻數(shù)分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點,過點C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com